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Background
The bidirectional relationship between metabolic syndrome (MetS) and mental health 
has emerged as a critical public health concern. However, no comprehensive bibliometric 
analysis has systematically mapped the knowledge structure and evolutionary trajectory of 
this interdisciplinary field.

Objective
This study aims to examine the relationship between MetS and mental health through a 
systematic bibliometric analysis, identifying research hotspots and emerging trends.

Methods
Literature from the Web of Science Core Collection (January 2000 to June 2025) was 
analyzed using VOSviewer, CiteSpace, and the bibliometrix package in R to examine 
publication trends, collaboration networks, research hotspots, molecular mechanisms, and 
disease association patterns.

Results
Analysis of 18,647 publications from 138 countries/regions revealed a 45.7-fold increase 
in annual publications, from 29 articles in 2000 to 1,324 in 2024, with 46.73% published in 
the past five years. The United States was ranked first in publication volume (26.75%) and 
network centrality. Keyword analysis identified 16 thematic clusters, with “inflammation” 
rising from ninth to fourth position across study periods. “Gut microbiota” emerged 
prominently post-2016, while “COVID-19” became a burst keyword after 2020. Molecular 
network analysis identified interleukin-6, insulin, and tumor necrosis factor as central hub 
proteins. Disease co-occurrence analysis demonstrated strong associations between MetS 
and depression and between insulin resistance and anxiety.

*Corresponding author: 
Hairong Cai 
Department of Emergency Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 
Guangdong 510102, China; 
Department of Emergency Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510102, China; 
Department of Emergency Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 
Guangdong 510102, China 
E-mail: 20182102085@stu.gzucm.edu.cn

Xia X, Pan Y, Cai H, Zhang W, Chen B, Cai H. Global research trends on the 
relationship between metabolic syndrome and mental health: A bibliometric and 
visual analysis (2000–2025). Health Psychol Res. 2026:e81240051
https://doi.org/10.14440/hpr.0313

https://orcid.org/0009-0003-8770-0543
https://orcid.org/0009-0006-3265-3091
https://orcid.org/0009-0009-2062-9133
https://orcid.org/0009-0006-1623-5404
https://orcid.org/0009-0004-5372-4851
https://orcid.org/0000-0001-7382-4615
https://doi.org/10.14440/hpr.0313


Global Trends in MetS and Mental Health

	 Health Psychology Research� 2

1. INTRODUCTION

Metabolic syndrome (MetS) represents a constellation of 
interrelated metabolic abnormalities—including central 
obesity, hypertension, dyslipidemia, and impaired glucose 
metabolism—that collectively amplify the risk of Type  2 
diabetes and cardiovascular disease.1 According to the 
International Diabetes Federation diagnostic criteria, MetS 
affects approximately 20–25% of the global adult popula-
tion, with prevalence escalating with age.2 Concurrently, 
mental health disorders have emerged as a paramount 
global health challenge. The World Health Organization 
reported that depression affects approximately 280 million 
individuals and anxiety disorders affect 301 million people 
worldwide.3 Accumulating evidence reveals a complex bidi-
rectional relationship between MetS and mental health, 
profoundly impacting quality of life while imposing sub-
stantial socioeconomic burdens.4,5

The past two decades have witnessed remarkable 
advances in elucidating the relationship between MetS and 
mental health. In 2013, Zhang et al.6 published a seminal 
meta-analysis that reported evidence supporting the bidi-
rectional relationship between depression and MetS. This 
foundational work catalyzed subsequent large-scale cohort 
studies that further delineated mechanisms linking psy-
chological factors—including anxiety and chronic stress—
with metabolic perturbations.7,8 The 2017 Lancet Psychiatry 
Commission consensus report underscored the critical 
importance of metabolic health management in individuals 
with mental illness.9 Recent breakthroughs in understand-
ing biological mechanisms—particularly the gut–brain 
axis, inflammatory pathways, and oxidative stress—have 
provided novel perspectives for deciphering this complex 
relationship.10,11 The COVID-19 pandemic further intensi-
fied scientific focus on the interplay between psychological 
stress and metabolic dysfunction.12

Despite substantial research progress, critical chal-
lenges persist. First, the expansive and fragmented liter-
ature lacks systematic integration. Preliminary analysis 
indicates over 10,000 relevant publications in the Web of 
Science database alone, spanning multiple disciplines and 
hindering researchers’ ability to comprehensively grasp the 
field’s landscape.13 Second, research hotspots and emerg-
ing trends remain inadequately characterized. The rela-
tionships between novel topics—such as gut microbiota 
and epigenetics—and established research themes require 
further elucidation.14 Third, collaboration networks among 
countries, institutions, and research teams, along with their 
temporal evolution, remain poorly mapped, constraining 
international cooperation.15 Finally, the field’s knowledge 
structure, evolutionary trajectory, and future directions lack 
quantitative analysis and visualization.

Bibliometrics employs mathematical and statistical meth-
ods to quantitatively analyze scientific literature, objectively 
revealing research trajectories, knowledge structures, and 
field evolution.12 Through systematic analysis of publication 
patterns, citation networks, collaboration structures, and 

thematic distributions, bibliometric approaches can identify 
research hotspots, track emerging trends, evaluate research 
impact, and inform scientific decision-making.16 Recent 
advances in visualization tools—particularly VOSviewer and 
CiteSpace—enable transformation of complex bibliometric 
data into intuitive knowledge maps, substantially enhancing 
analytical efficiency and depth.17

Several bibliometric analyses have examined topics 
related to metabolism and mental health, yet none have 
comprehensively addressed the relationship between MetS 
and the full spectrum of mental health disorders. Chen et al.18 
focused specifically on metabolic bariatric surgery outcomes, 
while Liu et al.19 analyzed sedentary behavior and men-
tal health. Other studies examined antipsychotic-induced 
metabolic disorders20 or obesity–depression comorbidity 
in pediatric populations.21 These analyses either addressed 
single interventions, isolated risk factors, reverse causality, 
or restricted populations. In contrast, the present study pro-
vides a comprehensive bibliometric analysis of research on 
the bidirectional relationship between MetS—as a unified 
clinical entity—and diverse mental health conditions across 
all populations over a 25-year period.

This study aims to systematically analyze the litera-
ture on the relationship between MetS and mental health 
from 2000 to 2025 using advanced bibliometric methods. 
We seek to: (i) construct comprehensive knowledge maps 
of the field; (ii) identify research hotspots and emerging 
trends; (iii) delineate collaboration networks and their evo-
lution; and (iv) provide evidence-based guidance for future 
research directions. This analysis will equip researchers 
with essential insights for navigating this rapidly evolving 
interdisciplinary field.

2. METHODS

2.1. DATA SOURCE AND SEARCH STRATEGY

This study utilized the Web of Science Core Collection 
(WoSCC), recognized as the premier comprehensive data-
base encompassing the world’s most influential academic 
journals and serving as the gold standard for bibliometric 
research.22 Data retrieval was conducted on June 11, 2025, 
including publications from January 01, 2000, to June 11, 
2025. This timeframe was strategically selected based on 
two key considerations: (i) the standardization of MetS diag-
nostic criteria post-2000,23 marking a watershed moment in 
global research focus; and (ii) the emergence of significant 
academic attention to the MetS–mental health relationship 
at the dawn of the 21st century.

The search strategy employed topic-based queries 
(TS) with the following comprehensive search string: 
TS=(“metabolic syndrome” OR “syndrome X” OR “insu-
lin resistance syndrome” OR “cardiometabolic risk”) AND 
TS=(“mental health” OR “psychological health” OR “depres-
sion” OR “anxiety” OR “stress” OR “psychological stress” OR 
“mental disorder” OR “psychiatric disorder”). This search 
algorithm was developed in accordance with the Preferred 

Conclusion
This analysis reveals rapid, accelerating growth in MetS–mental health research, with 
inflammation and the gut–brain axis as pivotal mechanistic links. Future priorities include 
elucidating the functional mechanisms of the gut microbiome and developing targeted 
interventions for shared pathological pathways. These findings provide a framework for 
identifying research priorities in this evolving field.
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Reporting Items for Systematic Reviews and Meta-Analyses 
Literature Search Extension guidelines for search strategy 
reporting,24 which are increasingly adopted in bibliometric 
studies to ensure reproducibility and comprehensive litera-
ture retrieval.

2.2. LITERATURE SELECTION AND QUALITY 
CONTROL

The inclusion criteria for the literature search were as fol-
lows: (i) studies directly addressing the relationship between 
MetS and mental health, including their bidirectional inter-
actions; (ii) document types limited to research articles and 
reviews; (iii) publications in English; and (iv) studies fully 
indexed in WoSCC.

The exclusion criteria included: (i) conference abstracts, 
editorials, letters, book reviews, corrections, or retractions 
lacking substantial academic content; (ii) studies without 
direct relevance to both MetS and mental health; (iii) dupli-
cate publications; (iv) records with incomplete biblio-
graphic information; and (v) studies primarily focused on 
cardiac syndrome X, which shares the term “syndrome X” 
but represents a distinct cardiovascular condition unrelated 
to MetS.

Two independent researchers with 17 and 15 years of bib-
liometric experience, respectively, conducted the literature 
selection. Initial screening was performed based on titles and 
abstracts, followed by a full-text evaluation for potentially 
eligible articles. Discrepancies were resolved through con-
sensus discussion, with a third researcher consulted when 
necessary. Inter-rater reliability was assessed using Cohen’s 
kappa coefficient, yielding κ = 0.823 (95% confidence inter-
val: 0.791–0.855), indicating substantial agreement.

2.3. DATA EXTRACTION AND ANALYTICAL TOOLS

Complete bibliographic records were extracted from WoSCC, 
encompassing author information, titles, abstracts, key-
words, references, publication years, journals, institutional 
affiliations, and countries/regions. Data were exported in 
plain text format with “full record and cited references” 
selected to ensure data completeness.25 The complete bibli-
ographic dataset of all 18,647 included publications is avail-
able in Table S1.

The following specialized bibliometric tools were 
employed for data processing and visualization:
i.	 VOSviewer (version  1.6.18, Leiden University, The 

Netherlands). Utilized for constructing and visualizing 
bibliometric networks, including collaboration, co-occur-
rence, and co-citation analyses.16 Analytical thresholds 
were established as follows: keywords (≥25 occurrences), 
authors (≥16 publications), institutions (≥70 publica-
tions), and countries (≥120 publications). The association 
strength method was applied for normalization, and vis-
ualization of similarities clustering algorithms were used 
for automatic categorization.

ii.	 CiteSpace (version  6.3.R1, Drexel University, United 
States). Employed for identifying research frontiers, 
detecting burst keywords, and constructing dual-map 
overlays to elucidate knowledge flow across disciplines.26 
Parameters included one-year time slices, node selection 
based on analysis type, g-index (k = 25) selection crite-
rion, and pathfinder network pruning for enhanced visu-
alization clarity.

iii.	Scimago Graphica (version  1.0.35, SCImago Research 
Group  S.L., Spain). Applied for geographic distribution 

mapping and advanced network visualizations, facilitat-
ing a comprehensive understanding of global research 
patterns.

iv.	R software (version  4.3.1, R Foundation for Statistical 
Computing, Austria) with specialized packages. The 
bibliometrix package enabled descriptive statistical 
analyses,27 ggplot2 facilitated the creation of custom vis-
ualizations, and dplyr streamlined data processing and 
management.

v.	 Online analytical platforms. The Citexs platform 
(https://www.citexs.com) extracted gene and disease 
information through text mining. The Search Tool for 
the Retrieval of Interacting Genes/Proteins (STRING) 
database (version 12.0, Swiss Institute of Bioinformatics, 
Switzerland) was employed to construct protein–protein 
interaction networks,28 while Cytoscape (version 3.10.0, 
Institute for Systems Biology, United States) was used to 
perform network topology analyses.29

2.4. DATA ANALYSIS STRATEGY

2.4.1. DESCRIPTIVE ANALYSIS

Descriptive analyses included annual publication volumes, 
growth rates, and cumulative outputs. A second-order pol-
ynomial regression model (y = ax2 + bx + c) was fitted to 
cumulative growth curves, with model fitness evaluated 
using the coefficient of determination (R2). Temporal publi-
cation distribution patterns were analyzed, with an empha-
sis on the proportion of recent publications (2020–2024).30

2.4.2. COLLABORATION NETWORK ANALYSIS

Multi-level collaboration networks were constructed for 
countries/regions and institutions. Inclusion thresholds 
comprised countries/regions with 120 or more publications 
and institutions with 70 or more publications. Network 
metrics calculated included publication volume, percent-
age contribution, total link strength (TLS), and normalized 
centrality (0–1 scale). VOSviewer network visualization dis-
played collaboration patterns.

2.4.3. AUTHOR AND JOURNAL ANALYSIS

Time–density analysis categorized authors by average publi-
cation year, identifying active research periods. Author inclu-
sion required ≥16 publications. CiteSpace’s dual-map overlay 
function analyzed subject distributions of citing and cited 
journals, revealing interdisciplinary knowledge transfer.31

2.4.4. RESEARCH DOMAIN AND KNOWLEDGE BASE 
ANALYSIS

Literature was classified according to Web of Science 
Categories. Co-citation analysis constructed knowl-
edge base networks with a minimum citation threshold 
of 40. Clustering quality was assessed using modularity 
Q (>0.3 indicating significant clustering) and the mean sil-
houette S (> 0.5 indicating reasonable clustering).32

2.4.5. RESEARCH HOTSPOTS AND THEMATIC EVOLUTION 
ANALYSIS

Keyword co-occurrence analysis identified research foci 
(minimum occurrence: 25). The log-likelihood ratio 
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algorithm generated cluster labels automatically. The study 
period was divided into five-year phases, with a timeline 
visualization tracking high-frequency changes in keyword 
ranking. Kleinberg’s burst-detection algorithm identified 
emerging topics and calculated burst strength values.33

2.4.6. MOLECULAR MECHANISM NETWORK ANALYSIS

Gene and protein information were extracted using the 
Citexs platform. High-frequency genes underwent func-
tional clustering analysis. Proteins with ≥ 130 occurrences 
were imported into STRING for protein–protein inter-
action network construction (confidence threshold: 0.7; 
species: Homo sapiens). Cytoscape was used to calculate 
network topology parameters. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses were performed with Benjamini–
Hochberg correction (adjusted p<0.05).34

2.4.7. DISEASE ASSOCIATION PATTERN ANALYSIS

Disease term co-occurrence analysis employed a minimum 
threshold of 200 occurrences. VOSviewer constructed dis-
ease networks with normalized association strength. Disease 
clusters were identified, and the strengths of inter-disease 
associations were calculated. Both density and network vis-
ualizations presented disease association patterns.35

All network visualizations employed proportional node 
sizing based on relevant metrics, with edge thickness indi-
cating the strength of association. Color coding was used 
to distinguish different clusters or temporal periods. Data 
analysis adhered to established bibliometric research pro-
cedures and reporting standards.

3. RESULTS

The comprehensive search strategy identified 19,673 
records through the WoSCC database. After applying the 
search period restriction (from January 01, 2000, to June 
11, 2025), 19,601 records remained. Further refinement by 
document types (articles and review articles only) yielded 
18,962 records. Language restriction to English resulted in 
18,647 records. All 18,647 publications were included in the 
quantitative and visualization-based bibliometric analy-
ses, encompassing publications per year, countries/regions, 
institutions, authors, journals, fields, references, keywords, 
genes, and diseases (Figure 1).

3.1. ANNUAL PUBLICATION TRENDS

Our comprehensive search identified 18,647 articles 
addressing the bidirectional relationship between MetS 
and mental health from the WoSCC database (January 

Figure 1. Flow chart of literature search. Image created by the authors
Abbreviation: TS: Topic-based queries.
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01, 2000, to June 11, 2025). The annual publication vol-
ume demonstrated remarkable growth, increasing 45.7-
fold from 29 articles in 2000 to 1,324 articles in 2024. 
Cumulative publication growth exhibited an excellent fit 
to a polynomial function (y = 32.742x2 − 92.691x − 102.4; 
R2 = 0.9979), indicating non-linear (accelerating) growth. 
The peak annual growth rate of 74.67% occurred in 2006, 
coinciding with the standardization of MetS diagnostic 
criteria. Publication output peaked in 2022  (1,398 arti-
cles). Notably, publications from the most recent 5-year 
period (2020–2024) accounted for 46.73% of the total 
output, underscoring the field’s accelerating momentum 
(Figure 2).

3.2. GEOGRAPHIC DISTRIBUTION AND 
INSTITUTIONAL COLLABORATION NETWORKS

Research contributions were made by 138 countries/regions 
and 14,766 institutions worldwide. The United States dom-
inated both publication volume (4,987 articles, 26.75%) 
and network centrality (0.53), establishing collaborative 
partnerships with 129 countries. China ranked second 
in productivity, with 2,555 articles (13.70%), followed by 
Italy with 1,422 articles (7.62%) (Figure 3A). Institutional 
analysis revealed University of Michigan as the most col-
laborative institution based on TLS. Leading institutions 
by publication volume included São Paulo University 
(181 articles), Tehran University of Medical Sciences 
(178 articles), and the University of Toronto (162 articles) 
(Figure 3B).

3.3. AUTHOR CONTRIBUTIONS AND JOURNAL 
DISTRIBUTION PATTERNS

The research community comprised 87,194 contribut-
ing authors. Time–density analysis revealed distinct 
generational cohorts: early pioneers (pre-2015), includ-
ing Sowers and Alfredo Martinez; mid-period contribu-
tors (2015–2019), featuring McIntyre and Penninx; and 
recent leaders (post-2019), including Sahebkar and Marycz 
(Figure 4A). The dual-map overlay analysis demonstrated 
that primary publication areas were concentrated in molec-
ular biology/immunology and clinical medicine domains, 
while cited references predominantly originated from 
molecular biology/genetics and healthcare/medicine jour-
nals (Figure 4B).

3.4. RESEARCH DOMAIN DISTRIBUTION AND 
KNOWLEDGE FOUNDATION

Literature analysis revealed five major research domain clus-
ters, with biomedical sciences as the predominant cluster. Core 
research domains comprised endocrinology and metabolism 
(4,237 articles, 22.71%), psychiatry (3,856  articles, 20.67%), 
and biochemistry and molecular biology (2,943 articles, 
15.78%) (Figure  5A). Co-citation network analysis yielded 
robust clustering metrics identifying 279 highly-cited founda-
tional works. Key publications included Saklayen36 on global 
MetS epidemiology (279 citations) and Furukawa et  al.37 on 
oxidative stress mechanisms (145 citations), collectively 
forming the field’s knowledge foundation (Figure 5B).

3.5. RESEARCH HOTSPOTS AND THEMATIC 
EVOLUTION

Keyword co-occurrence analysis (Q = 0.8497, S = 0.9597) 
revealed 16 distinct thematic clusters: (i) MetS, (ii) oxida-
tive stress, (iii) chronic kidney disease, (iv) insulin (INS) 
resistance, and (v) mental health, among others (Figure 6A). 
Temporal analysis of keyword evolution revealed notable 
shifts: “inflammation” ascended from the ninth position 
(2000–2005) to the fourth position (2021–2025), reflecting 
its growing recognition as a mechanistic link. “Gut microbi-
ota” exhibited rapid emergence post-2016, while “COVID-19” 
emerged rapidly in the research landscape after 2020 with 
exceptional strength (burst strength = 6.84) (Figure 6B).

3.6. MOLECULAR MECHANISMS AND SIGNALING 
NETWORKS

Text mining of 18,647 articles yielded 6,241 genes, with 
150 occurrences set as the threshold for visualization. 
Co-occurrence clustering revealed three distinct gene clus-
ters: red (signaling: NFKB1, AKT1, PPARG), green (inflamma-
tory: IL6, TNF), and blue (metabolic: INS, CRP, ADIPOQ, LEP) 
(Figure  7A). GO enrichment analysis identified significant 
enrichment in biological processes, including nutrient level 
response, peptide hormone response, inflammatory regula-
tion, and cytokine production (p < 0.001). Cellular components 
were enriched in the external side of the plasma membrane, 
vesicle lumens, and secretory granule lumens. Molecular 
functions showed enrichment in cytokine receptor binding, 
transcription factor binding, and RNA polymerase II-specific 
binding (Figure 7B). KEGG pathway analysis revealed signifi-
cant enrichment in lipid and atherosclerosis, phosphoinositide 
3-kinase (PI3K)–protein kinase B (Akt) signaling, fluid shear 
stress and atherosclerosis, non-alcoholic fatty liver disease, 
alcoholic liver disease, INS resistance, and tumor necrosis 
factor (TNF) signaling pathways (Figure 8A). Protein–protein 
interaction analysis of the top 100 proteins (minimum 131 
occurrences) using STRING (confidence: 0.700) generated a 
network of 100 nodes and 915 edges (average degree: 18.3). 
Cytoscape analysis identified hub proteins: interleukin (IL) 
6, INS, TNF, IL1B, AKT1, albumin, signal transducer and 
activator of transcription 3, IL10, tumor protein p53, and 
nuclear factor kappa B subunit 1, representing core regula-
tory elements in MetS–mental health interactions (Figure 8B).

3.7. DISEASE ASSOCIATION PATTERNS

Analysis identified 3,822 diseases linked to MetS and men-
tal health. Disease co-occurrence analysis revealed three 

Figure 2. Annual publication trends in metabolic 
syndrome–mental health research (2000–2025). The 
bar chart displays annual publication volumes; the 
curve represents cumulative publications. Inset: 
polynomial regression model of cumulative growth 
trajectory
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major clusters: a metabolic disease cluster (MetS: 54,243 
occurrences; INS resistance: 43,668 occurrences), a cardi-
ovascular disease cluster (vascular diseases: 16,722 occur-
rences; hypertension: 14,893 occurrences), and a psychiatric 
disease cluster (depression: 12,456 occurrences; anxiety: 
9,832 occurrences). Association strength analysis revealed 
the most robust connections between MetS and depression 
(link strength = 3,247) and between INS resistance and anx-
iety (link strength = 2,856) (Figure 9).

4. DISCUSSION

This comprehensive bibliometric analysis of 18,647 arti-
cles spanning 2000–2025 provides unprecedented insights 
into the knowledge architecture, evolutionary trajectory, 
and emerging frontiers in MetS–mental health research. 
Our findings reveal exponential growth in research out-
put—a 45.7-fold increase—with nearly half (46.73%) of all 
publications emerging in the past 5 years. This remarkable 

expansion reflects the field’s transition from nascent explo-
ration to mature investigation. Particularly striking are the 
rapid ascent of inflammation mechanisms, the emergence of 
gut microbiota research, the catalytic effect of the COVID-19 
pandemic, and the robust association between MetS and 
depression. These findings offer novel insights into the intri-
cate mechanisms that connect MetS and mental health.

The extraordinary research growth trajectory stems from 
multiple converging factors. First, the escalating global bur-
den of both MetS and mental health disorders has mobilized 
substantial academic attention and funding.38,39 The 74.67% 
growth peak in 2006 likely reflects several factors: (i) the 
American Heart Association’s landmark scientific state-
ment on MetS diagnosis and management, which provided 
standardized diagnostic criteria;40,41 (ii) increased research 
funding from major agencies, such as the National Institutes 
of Health, which expanded chronic disease research port-
folios during this period; (iii) growing policy attention to 
the prevention and management of metabolic and mental 
health comorbidities; and (iv) the rising global prevalence 

Figure 3. Global research distribution and institutional collaboration networks. (A) Geographic visualization of 
country/region contributions, with node size proportional to publication volume and edge thickness indicating 
collaboration intensity. (B) Institutional collaboration network displaying cluster differentiation through color 
coding, with node size reflecting publication output

B

A
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of obesity and MetS, which heightened research urgency. 
Second, technological advances in molecular biology—
particularly high-throughput sequencing and multi-om-
ics platforms—have enabled unprecedented mechanistic 
exploration of MetS–mental health interactions.42 Third, 
the COVID-19 pandemic precipitated an urgent investiga-
tion into the interplay between psychological stress and 
metabolic dysfunction, as evidenced by the emergence 
of “COVID-19” as a burst keyword (strength = 6.84) post-
2020, reflecting acute public health imperatives.43 However, 
given the relatively short post-2020 analysis window, the 
long-term significance of COVID-19 as a sustained research 
theme in this field requires continued observation in future 
bibliometric studies.

Geographic collaboration patterns reveal compelling 
insights into global research dynamics. The United States’ 
dominance—26.75% of publications and 0.53 centrality—
reflects not merely quantity but strategic positioning within 
international networks. This leadership is rooted in a robust 
research infrastructure, sustained funding from agencies such 
as the National Institute of Mental Health, and a longstanding 
commitment to mental health research.44 China’s rapid ascent 
to second place (13.70%) demonstrates the growing research 
capacity of emerging economies. However, China’s relatively 
modest network centrality signals opportunities for enhanced 
international collaboration.45 São Paulo University’s insti-
tutional leadership (181 articles) likely reflects both Latin 
America’s high prevalence of MetS and the institution’s 

distinguished reputation in psychiatric research.46 Notably, 
international collaboration has substantially increased over 
the study period. The field expanded to encompass 138 coun-
tries/regions, with the United States demonstrating the high-
est TLS and establishing the strongest bilateral collaboration 
with China, followed by partnerships with Canada and Italy. 
The concentration of 46.73% of publications in the last five 
years reflects growing research activity and collaborative 
opportunities. However, collaboration remains concentrated 
among a limited number of countries, suggesting opportuni-
ties for broader international engagement.

The evolution of research themes powerfully illustrates 
conceptual maturation in the field. The progression of 
inflammation from the ninth position (2000–2005) to the 
fourth (2021–2025) confirms its recognition as a funda-
mental mechanistic bridge between metabolic and mental 
health disorders.47 Our molecular network analysis rein-
forces this, positioning pro-inflammatory cytokines IL6 
(degree = 76) and TNF (degree = 69) as central nodes in 
the protein–protein interaction network. This aligns with 
accumulating evidence that chronic low-grade inflamma-
tion represents a shared pathophysiological substrate for 
both MetS and depression.48 The post-2016 surge in gut 
microbiota research reflects a growing appreciation for 
the gut–brain axis, with compelling evidence that dysbio-
sis influences bidirectional metabolism and mental health 
regulation through neurotransmitter synthesis, immune 
modulation, and the production of microbial metabolites.49

Figure 4. Temporal evolution of author contributions and journal distribution patterns. (A) Author publication 
time–density visualization with color gradients indicating average publication years. (B) Dual-map overlay 
illustrating citation flows between citing journals (left) and cited journals (right)

B

A
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Molecular mechanism analysis unveiled intricate 
interaction networks underlying the MetS–mental health 
interface. GO enrichment highlighting nutrient sens-
ing and peptide hormone responses (p<0.001) under-
scores the critical role of metabolic signaling in mood 
regulation.50 KEGG pathway analysis, revealing lipid/
atherosclerosis (gene ratio = 0.142) and PI3K–Akt sign-
aling (gene ratio = 0.138) pathways, suggests these cas-
cades not only govern metabolism but also profoundly 
influence neuroprotection and emotional regulation.51 
INS’s network centrality (degree = 72) supports emerg-
ing hypotheses that INS resistance serves as a common 
pathological denominator linking metabolic dysfunction 
with cognitive-emotional disturbances.52 These molec-
ular insights provide actionable targets for therapeutic 

interventions addressing shared pathophysiological 
mechanisms.

Disease association patterns yield profound clinical 
implications. The robust MetS–depression link (strength 
= 3,247) likely operates through multiple interconnected 
mechanisms: (i) hypothalamic–pituitary–adrenal axis dys-
regulation driving hypercortisolemia, promoting visceral 
adiposity and INS resistance;53 (ii) chronic inflammation 
activating tryptophan-kynurenine metabolism, depleting 
serotonin synthesis;54 and (iii) oxidative stress compromis-
ing hippocampal integrity, disrupting mood regulation and 
cognitive function.55 The INS resistance–anxiety associa-
tion (strength = 2,856) suggests metabolic perturbations 
may precipitate anxiety through disrupted cerebral energy 
metabolism and neurotransmitter homeostasis.56 These 

Figure 5. Research domain clustering and knowledge foundation networks. (A) Five major research domain 
clusters distinguished by different colors. (B) Co-citation network with node size representing citation frequency 
and color indicating temporal patterns

B

A



Global Trends in MetS and Mental Health

	 Health Psychology Research� 9

findings support considering routine mental health screen-
ing in MetS patients and metabolic monitoring in psychiat-
ric populations.

Several limitations warrant consideration. First, the 
inherent constraints of bibliometric software present chal-
lenges in combining multiple databases for analysis; there-
fore, this study relied exclusively on the WoSCC database 

without incorporating other databases, such as Scopus, 
PubMed, or Embase. Although WoSCC is recognized as the 
gold standard for bibliometric research due to its compre-
hensive citation data and compatibility with visualization 
tools, some influential publications indexed in other data-
bases may have been excluded, potentially introducing cov-
erage bias, particularly for non-English publications and 

Figure 6. Research hotspot identification and thematic evolution. (A) Keyword co-occurrence network displaying 
16 color-differentiated clusters. (B) Temporal heat map illustrating ranking dynamics of top 30 keywords across 
five-year intervals (2000–2025)
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regional journals.57 Second, English-only inclusion may 
introduce linguistic bias, underrepresenting research contri-
butions from non-Anglophone regions, particularly studies 
published in local or regional journals, which could affect the 
global representativeness of our findings.58 Third, the biblio-
metric analysis examined the characteristics of the literature 

rather than its methodological quality or the validity of the 
results.59 Fourth, database updates may alter specific metrics 
over time. Finally, text-mining approaches for gene/disease 
extraction may yield false positives or negatives.60

Our analysis suggests several future research directions: 
(i) a mechanistic elucidation of gut–brain axis contributions, 

Figure 7. Gene co-occurrence and functional enrichment analysis. (A) Gene clustering network showing signaling 
(red), inflammatory (green), and metabolic (blue) clusters. (B) Gene ontology enrichment analysis. Bubble size 
indicates gene count; color represents adjusted p-values
Abbreviations: BP: Biological process; CC: Cellular component; MF: Molecular function.
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particularly specific microbiota strains and their bioactive 
metabolites;61 (ii) the development of targeted interventions 

addressing shared pathological cascades—inflammation, oxi-
dative stress, and metabolic dysfunction;62 (iii) high-quality 

Figure 8. Pathway and protein interaction analysis. (A) Kyoto Encyclopedia of Genes and Genomes pathway 
enrichment analysis. (B) Protein–protein interaction network with hub proteins (magenta), including 
interleukin-6, insulin, TNF, and AKT. Node size indicates degree centrality
Abbreviations: AGE–RAGE: Advanced glycation end-product–receptor for advanced glycation end-products; 
HIF-1: Hypoxia-inducible factor; PI3K–Akt: Phosphoinositide 3-kinase–protein kinase B; TNF: Tumor necrosis factor
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Figure 9. Disease association network analysis. Node size represents disease occurrence frequency, edge 
thickness indicates co-occurrence strength, and colors distinguish three major disease clusters

longitudinal cohort studies to establish causal directional-
ity;63 and (iv) enhanced international collaboration to gen-
erate globally representative evidence.64

5. CONCLUSION

This pioneering bibliometric analysis of 18,647 publica-
tions (2000–2025) reveals the exponential growth of MetS–
mental health research, with a 45.7-fold increase in annual 
output. The United States led global research (26.75% of 
publications, centrality = 0.53), while inflammation (IL6, 
TNF) and the gut–brain axis emerged as central mechanistic 
paradigms. The robust associations between MetS–depres-
sion (link strength = 3,247) and INS resistance–anxiety (link 
strength = 2,856) underscore the urgent need for integrated 
clinical approaches. From a clinical perspective, these find-
ings support the implementation of routine mental health 
screening in patients with MetS and systematic metabolic 
monitoring in psychiatric populations. The strong disease 
associations identified in our analysis reinforce the need 
for integrated care models that address both metabolic and 
mental health simultaneously.

Our findings highlight three critical research priorities: 
elucidating the functional mechanisms of gut microbiota, 
developing interventions that target shared inflammatory 
pathways, and conducting longitudinal studies to establish 
causal relationships.
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